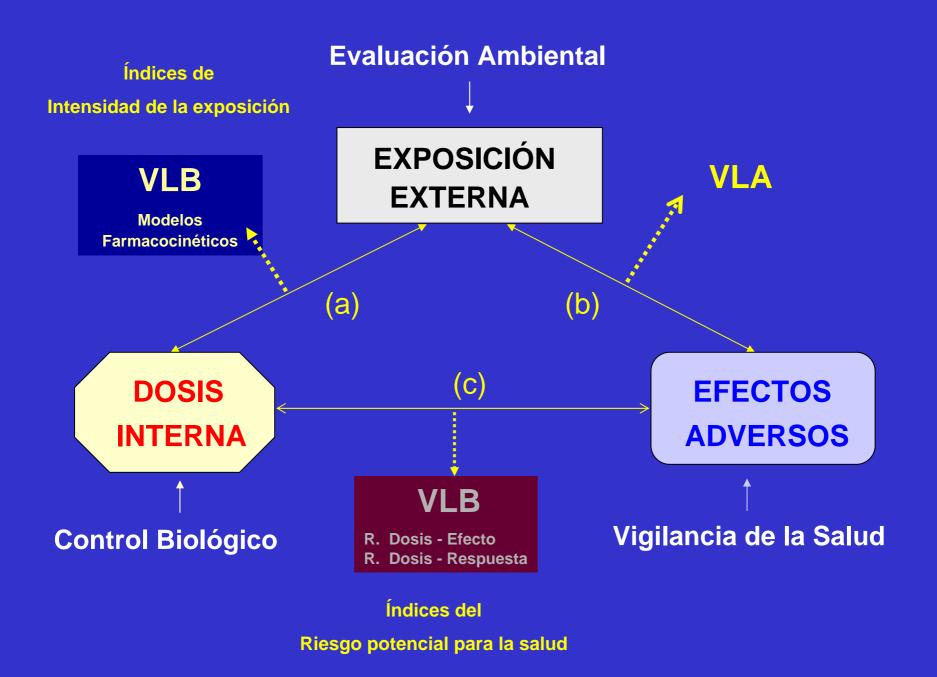
INTERPRETACIÓN DE LOS RESULTADOS DEL CONTROL BIOLÓGICO

Juan Porcel
INSHT

APLICACIONES


- > EVALUACIÓN DE LA EXPOSICIÓN
- > RIESGO POTENCIAL PARA LA SALUD

CONTRAINDICACIONES

- VALORAR EFECTOS ADVERSOS
- DIAGNOSTICAR ENFERMEDADES PROFESIONALES
- O DEFINIR UNA SITUACIÓN COMO DE RIESGO O NO

APORTACIONES SUPLEMENTARIAS

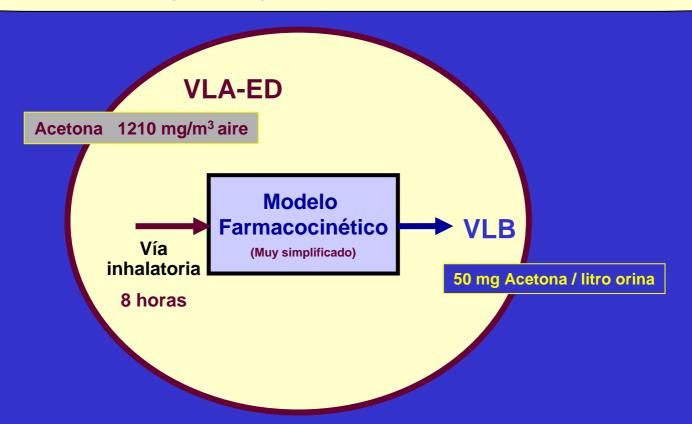
- ✓ ABSORCIÓN POR VÍA DÉRMICA
- ✓ CARGA DE TRABAJO EXCESIVA
- ✓ EXPOSICIÓN EXTRALABORAL
- ✓ EFICACIA DE EPI'S Y MEDIDAS DE CONTROL

ESTABLECIMIENTO DE LOS VLB

Intensidad de la Exposición → Nivel del Indicador Biológico (VLA) (VLB)

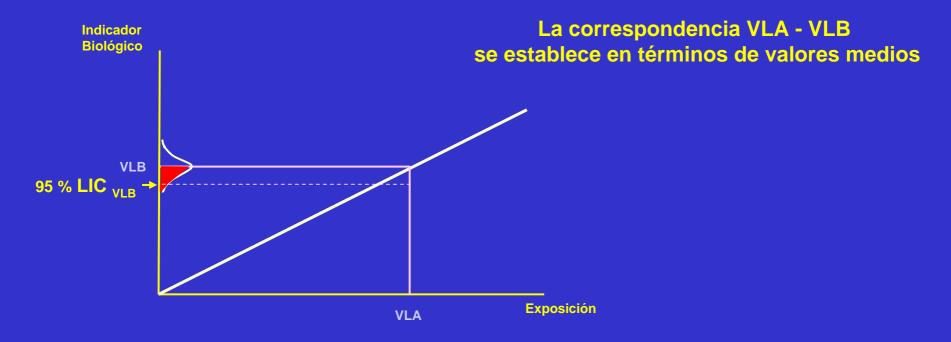
- Derivados y equivalentes biológicos de los VLA
- Modelos farmacocinéticos fisiológicos y estudios de campo

Nivel del Indicador Biológico ← Efectos para la Salud (VLB) (EFECTO)


- Fundamentados en criterios de salud
- Estudios de campo y estudios con voluntarios
- Relaciones dosis efecto y dosis respuesta, NOAEL
- ❖ VLB basados en la llamada <u>"benchmark dose"</u>, altenativa al NOAEL, y derivada usando un modelo estadístico que recoge todos los datos experimentales disponibles (LIC 95%)
- VLB basados en <u>"buenas prácticas de trabajo"</u>: principalmente penetración dérmica y sin valor límite fundamentado en criterios de salud (2-cloroanilina)
- VLB basado en <u>efectos sistémicos</u> y VLA para prevenir <u>efectos locales</u> (no hay correspondencia)

VALORES LÍMITE BIOLÓGICOS

Son los valores de referencia para los indicadores biológicos


¿ Qué representan?

Los niveles más probables que alcanzarían los indicadores biológicos en trabajadores sometidos a una exposición global a agentes químicos, equivalente, en términos de dosis absorbida, a una exposición por inhalación al nivel del VLA-ED

DERIVACIÓN VLA - VLB

El VLA protegería aproximadamente al 95 % de los trabajadores expuestos

"A una concentración ambiental al nivel del VLA...
el 50 % de los expuestos podrían dar resultados biológicos por debajo del VLB"

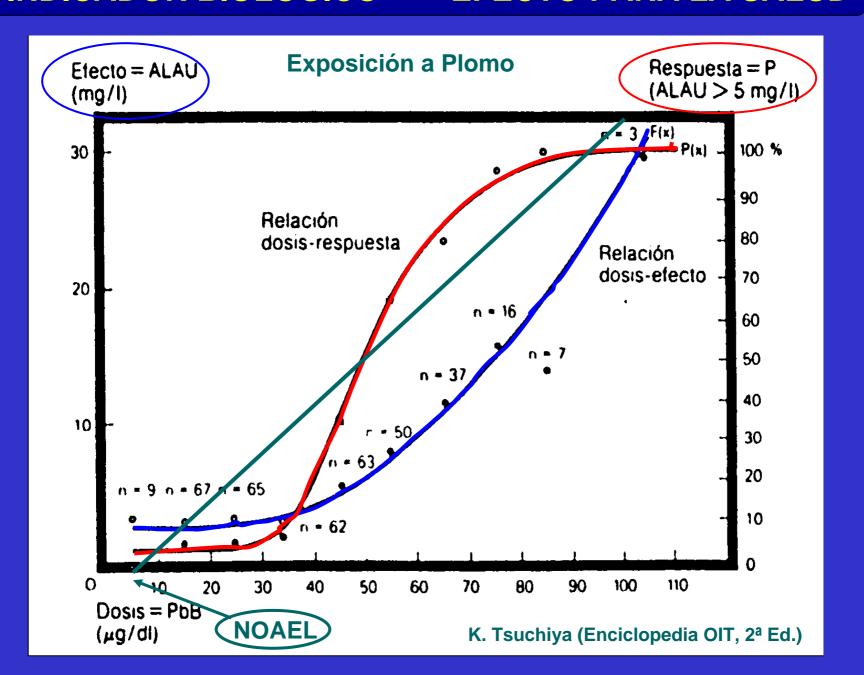
Para un resultado individual, un "nivel de protección equivalente" al que proporciona el VLA (95%), no lo proporcionaría el VLB si no el límite inferior de intervalo de confianza, al 95 %, del VLB

INTERPRETACIÓN DE LOS RESULTADOS

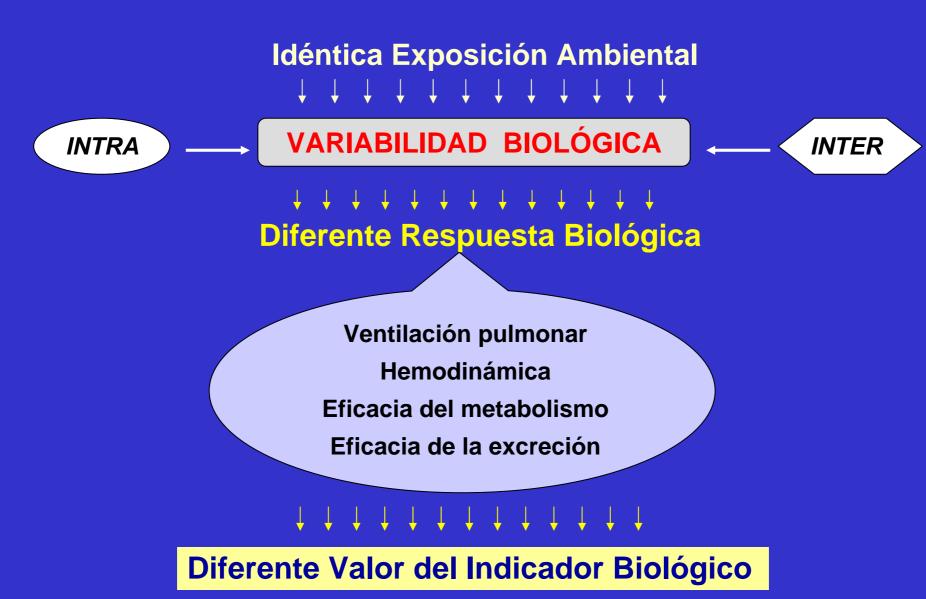
INCONSISTENCIA DE LAS COMPARACIONES

$$\frac{\text{VLB}}{\text{VLA-ED}} = \frac{50 \text{ (mg acetona / litro orina)}}{1210 \text{ (mg acetona / m³ aire)}} \cong \frac{\text{Resultado}_{Bio.} \text{ (mg acetona / litro orina)}}{\text{Resultado}_{Amb.} \text{ (mg acetona / m³ aire)}}$$

FACTORES


- ✓ Fluctuaciones en la concentración ambiental (distribución log-normal)
- ✓ Momento de la toma de muestra (cinética del indicador)
- ✓ Variabilidad individual (biológica, hábitos y conducta)
- ✓ Metodología inadecuada (toma de muestra, análisis, almacenamiento, etc)

INTERPRETACIÓN DE LOS RESULTADOS


INCONSISTENCIA DE LAS COMPARACIONES

- √ Penetración dérmica significativa y adicional a la inhalatoria
- ✓ Carga física de trabajo elevada o excesiva
- ✓ Exposición extralaboral adicional

INDICADOR BIOLÓGICO - EFECTO PARA LA SALUD

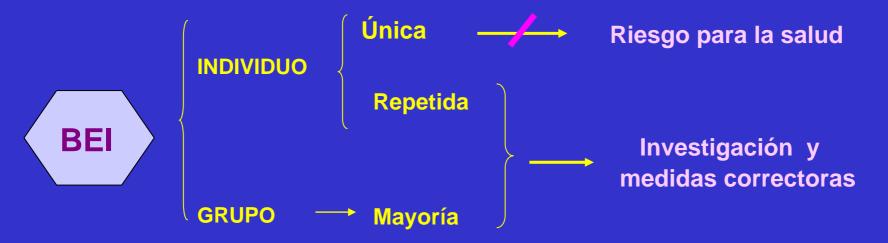
VARIABILIDAD INDIVIDUAL

MOMENTO DE LA TOMA DE MUESTRA

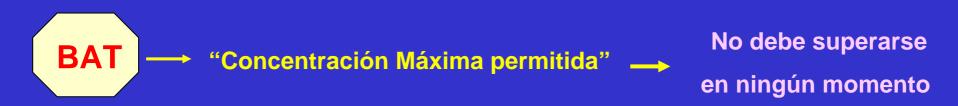
VIDA MEDIA (BIOLÓGICA)	ACUMULACIÓN	MOMENTO DEL MUESTREO	CUÁNDO
< 5 horas	NO	Muy Crítico	Antes de la jornada laboral (16 horas sin exposición) Final de la jornada laboral (Tras el cese de la exposición real)
> 5 horas	SI semanal	Crítico	Al comienzo de la semana (2 días sin exposición) Final de la semana laboral (Tras 4 ó 5 días de exposición)
Larga	SI años	No Crítico	Discrecional (Tras un periodo de estabilización)

INTERPRETACIÓN DE LOS RESULTADOS

SUPERACIÓN DEL VLB


Resultado Individual > VLB + Exposición Excesiva

Variabilidad
Biológica y de Conducta


- Investigación (factores causales)
- Adopción de medidas provisionales

DOS FILOSOFÍAS

DOS CONSIDERACIONES

"Nivel más probable que alcanzaría un indicador biológico tras una exposición global, equivalente a una exposición por inhalación del orden del valor límite ambiental"

"Cantidad máxima permisible de una sustancia química o de sus metabolitos o la máxima desviación permisible inducida por dicha sustancia, en humanos expuestos"

DIFERENTE FILOSOFÍA DIFERENTE PRÁCTICA

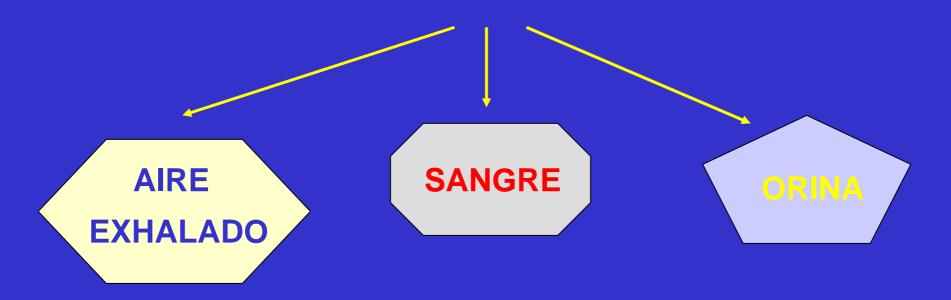
Metil etil cetona (2 - Butanona)

Un mismo estudio y los mismos datos experimentales

TLV - TWA = MAK = 200 ppm

BEI

2 mg / litro orina (final del turno de trabajo)


"Valor más probable esperable tras una exposición al TLV-TWA"

BAT

5 mg / litro orina (final del turno de trabajo)

"Valor más alto esperable tras una exposición al MAK"

MEDIOS BIOLÓGICOS

ORINA

17 corregidos con la creatinina

22 sin corrección

SANGRE

13 en sangre total

2 en eritrocitos (colinesterasa)

1 en plasma (pentaclorofenol)

AIRE EXHALADO

2 (percloroetileno y monóxido de carbono)

LA SANGRE

- Exposición reciente
- ✓ Exposición del día precedente
- ✓ Carga corporal

(al finalizar la exposición)

(pasadas 16 horas)

(compuestos acumulables: Pb, PCBs)

INDICADORES EN SANGRE

- Compuestos inorgánicos
- Compuestos orgánicos pobremente metabolizables
- **Compuestos volátiles** (Conc. Sangre ← Conc. Aire exhalado)

Composición

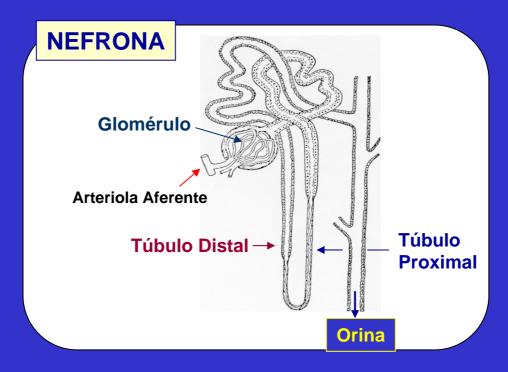
Plasma + Células

Hematies

Leucocitos
Plaquetas

+ Sustancias

Macromoléculas
Electrolitos
No-Electrolitos Macromoléculas


Pentaclorofenol → plasma

PRECAUCIONES

Conservación **Hemólisis** Anticoagulante adecuado

LA ORINA

- Fluido acuoso (90 98 %) con sólids en disolución
- Eliminación: 1200 ml / día (600 2500)

MECANISMOS DE ELIMINACIÓN

- Filtración glomerular: $(P_m < 50.000)$, electrolitos, metales
- Secreción tubular pasiva (distal): cetonas, tolueno, metanol, óxido nitroso
- Transporte tubular activo (proximal): mercurio, fenol

INDICADORES EN ORINA

"Reflejan el nivel medio del contaminante en el plasma durante el tiempo que la orina permanece en la vejiga"

- Compuestos y metabolitos hidrofílicos
- Metales
- Disolventes polares (sin metabolizar)

- ✓ Acumulación de compuestos en el riñón (Cd y Hg)
- ✓ Momento de la toma de muestra (vida media)
- ✓ Variabilidad en la producción de orina

VARIABILIDAD EN LA PRODUCCIÓN DE ORINA

- * Orina de 24 h
- * Orina puntual

Una muestra puntual representa la orina producida durante las 2 - 4 últimas horas y está influida por varios factores:

Corrección de la concentración de analito

Parámetros de referencia

Sólidos totales (densidad)

Creatinina

Flujo urinario

CORRECCIÓN POR CREATININA

" Consiste en referir la concentración del contaminante o de sus metabolitos a la concentración de creatinina excretada en la orina "

CREATININA

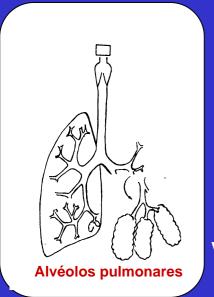
- Subproducto del metabolismo muscular
- Escasamente influida por la variabilidad en la eliminación →
- Mecanismo de eliminación: filtración glomerular

Hidratación Dieta Diuresis Flujo urinario

$$\frac{C_{\text{orina}}}{C_{\text{creatinina}}} = C_{\text{mg/g}} = C_{\text{creatinina}}$$

- Se desprecian muestras con concentración de creatinina < 0,5 g/l y > 3,0 g/l
- Solo es aplicable a eliminaciones vía glomérulo, no por difusión o transporte activo

AIRE EXHALADO


Compuestos volátiles: gases y vapores

Excepto

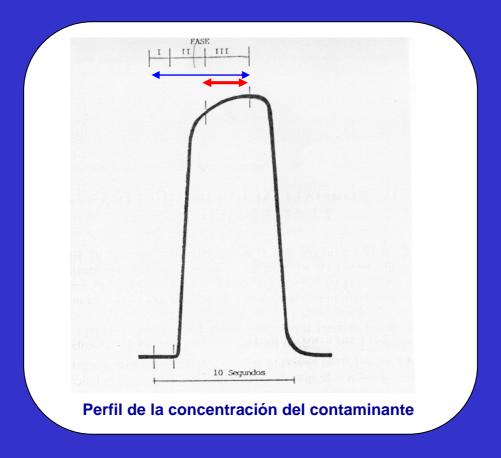
muy solubles en agua: cetonas y alcoholes

reactivos : anilina

fácilmente metabolizables: benceno

$$P_i$$
 (sangre) \rightarrow P_i (aire)

Concentración en sangre pulmonar

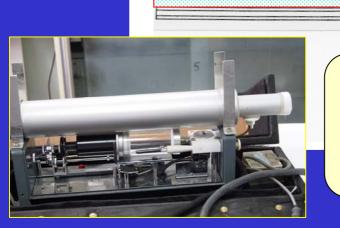

Concentración en aire alveolar

				_
۸.	/ ~		1 4 F A	
١v	-			
М.	A-1	lumen muer		

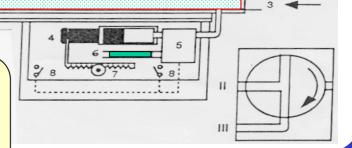
 Aire exhalac 	21%	
	6.5	

• Aire alveolar
$$\begin{cases}
O_2 & 14\% \\
CO_2 & 5\% \\
Vapor & 6,5\%
\end{cases}$$

EXHALACIÓN SIMPLE



Fases I + II + III — Aire exhalado mezclado (aire alveolar + aire del volumen muerto)


Fase III — Aire alveolar (refleja la concentración en los alvéolos)

TOMA DE MUESTRA DE AIRE EXHALADO

- 1. Tubo de aluminio calorifugado
- 2. Válvula antirretroceso
- 3. Tubo de cartón desechable
- 4. Jeringa
- 5. Válvula de tres vías
- 6. Tubo con absorbente
- 7. Motor
- 8. Interruptores de carrera

Sistema Bio VOC

VALORES LÍMITE EN AIRE EXHALADO

ACGIH

Contaminantes con Indicador en aire exhalado / Contaminantes con BEI establecido

<u> 1889 - 90</u>

2010

9/19

4 / 47

- Monóxido de carbono (valor)
- Percloroetileno (valor)
- Etilbenceno (sq)
- Tricloroetileno (sq)

NOTACIÓN "Vía Dérmica"

" Advierte de la posibilidad de una contribución significativa a la carga corporal total debida a la absorción cutánea "

SOSPECHA

- Aparición de efectos sistémicos
- Valores de control biológico excesivos
- DL₅₀ (vía dérmica) bajas (comparativamente)

Penetración percutánea (µg/cm²/h)

$$R \text{ estimado} = \frac{C_{sat}}{15} (0.038 + 0.153P) e^{-0.016Pm}$$

R flujo de penetración percutáneo

C_{sa t} solubilidad en agua

P coeficiente de reparto octanol / agua

P_m peso molecular

NOTACIÓN "Vía dérmica"

Criterio ECETOC

Se asigna la notación "Vía dérmica" cuando la cantidad absorbida a través de ambas manos y antebrazos en 1 hora sea mayor que el 10% de la cantidad absorbida por vía pulmonar en una exposición al nivel del valor límite de exposición profesional (LEP*) durante 8 horas.

*LEP (establecido para prevenir efectos sistémicos)

• Area de manos y antebrazos: 2000 cm²

• Volumen de aire inhalado en 8 h: 10 m³

• Fracción de contaminante absorbida: f (0,5 p.d.)

• Tiempo de Inmersión: 1 hora

$$R_{crítico} = 0.25 . LEP (\mu g/cm^2. h)$$

Si R > 0,25 · LEP → Notación "Vía dérmica"

CRITERIO ACGIH

Fiserova-Bergerova

Si la cantidad de contaminante absorbido por la vía dérmica excede del 30 % de lo ingresado por la vía inhalatoria en una exposición al nivel del TLV-TWA durante 8 horas, la sustancia tiene suficiente capacidad de penetración como para asignarle la notación "piel"

Asumiendo que el área expuesta corresponde a las manos y asignándoles a éstas un 2 % del total de la superficie corporal, equivalente a 360 cm²

$$R^* = 0.75 \cdot \text{LEP}(\text{TLV-TWA}) \quad (\frac{\mu g}{cm^2 \cdot h})$$

$$R > 0.75 \cdot LEP(TLV - TWA) \quad (\frac{\mu g}{cm^2 \cdot h})$$